Search results

1 – 5 of 5
Article
Publication date: 1 August 2001

Zoeljana Nikolic´, Ante Mihanovic´ and Pavao Marovic´

Presents a procedure for obtaining an improved finite element solution of boundary problems by estimating the principle of exact displacement method in the finite element…

Abstract

Presents a procedure for obtaining an improved finite element solution of boundary problems by estimating the principle of exact displacement method in the finite element technique. The displacement field is approximated by two types of functions: the shape functions satisfying the homogeneous differential equilibrium equation and the full clamping element functions as a particular solution of the differential equation between the nodes. The full clamping functions represent the solution of the full clamping state on finite elements. An improved numerical solution of displacements, strains, stresses and internal forces, not only at nodes but over the whole finite element, is obtained without an increase of the global basis, because the shape functions are orthogonal with the full clamping functions. This principle is generally applicable to different finite elements. The contribution of introducing two types of functions based on the principle of the exact displacement method is demonstrated in the solution procedure of frame structures and thin plates.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 November 2015

Ivan Balic, Ante Mihanovic and Boris Trogrlic

The purpose of this paper is to present a new modification of the multimodal pushover method, named the target acceleration method. The target acceleration is the minimum…

Abstract

Purpose

The purpose of this paper is to present a new modification of the multimodal pushover method, named the target acceleration method. The target acceleration is the minimum acceleration of the base that leads to the ultimate limit state of the structure, i.e., the lowest seismic resistance.

Design/methodology/approach

A nonlinear numerical model is used to determine the target acceleration, which is achieved using the iterative procedure according to the envelope principle. Validation of the target acceleration method was conducted on the basis of the results obtained by incremental dynamic analysis.

Findings

The influence of higher modes is highly significant. The general failure vector corresponding to the target acceleration differs from the first load vector and the form of the load with uniform acceleration according to the height of structure, as contained in the European Standard EN 1998-1. Comparison between the target acceleration, including the equivalent structural damping, and the failure peak ground acceleration obtained from the dynamic response of the structure exhibits notably good agreement. This result implies that the equivalent structural damping as calculated according to the formulation presented in this paper should be greater than that suggested in the literature.

Originality/value

The originally developed procedure named multimodal pushover target acceleration method can reasonably estimate the minimum acceleration of the base that leads to the ultimate limit state of the structure, and consequently provides a reliable tool for the assessment of the lowest seismic resistance.

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 March 2008

Boris Trogrlic and Ante Mihanovic

This paper aims to present a new numerical model for the stability and load‐bearing capacity computation of space reinforced‐concrete (R/C) frame structures. Both material and…

Abstract

Purpose

This paper aims to present a new numerical model for the stability and load‐bearing capacity computation of space reinforced‐concrete (R/C) frame structures. Both material and geometric nonlinearities are taken into account. The R/C cross‐sections are assumed to undergo limited distortion under torsional action.

Design/methodology/approach

A simple, global discretization using beam‐column finite elements is preferred to a full, global discretization using 3D elements. This is more acceptable from a practical point of view. The composite cross‐section is discretized using 2D elements to apply the fiber decomposition procedure to solve the material and geometrical nonlinear behavior of the cross‐section under biaxial moments and axial forces. A local discretization of each beam element based on the comparative body model (i.e. a prismatic body discretized using brick elements, element by element, during the incremental‐iterative procedure) allows determining the torsional constant of the cross‐section under limited warping. The classical global iterative‐incremental procedure is then used to solve the resulting material and geometric nonlinear problem.

Findings

It has been noticed that, in case of a limited distortion of the cross‐section, the torsional constant of homogeneous (linear elastic) materials is greater than the one obtained from the Saint‐Venant theory. However, due to low‐tensile strength of concrete materials, the torsional constant decreases significantly after an early loading phase, primarily due to the lack of reinforcing flanges.

Research limitations/implications

The current study does not cover the torsion analysis of R/C cross‐section with stirrups. Besides, the bond‐slip effect between concrete and steel reinforcement is not taken into account, nor is the local buckling of the beam flanges and rebar.

Practical implications

This new numerical model has been implemented in a computer program for effectively computing the nonlinear stability and load bearing capacity of space R/C frames.

Originality/value

The authors believe that the comparative body model should bring a new approach to the solution of torsion problems with limited distortion of cross‐sections in material and geometric nonlinear analysis of space R/C frames.

Details

Engineering Computations, vol. 25 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1997

Zeljana Nikolic and Ante Mihanovic

Presents a non‐linear numerical model for the computations of post‐tensioned plane structures. Generally curved prestressing tendons and reinforcing bars are embedded into the…

1038

Abstract

Presents a non‐linear numerical model for the computations of post‐tensioned plane structures. Generally curved prestressing tendons and reinforcing bars are embedded into the concrete and they are modelled independently of the concrete mesh using one‐dimensional curvilinear elements. Among the losses which influence the decrease in the prestress force, it is possible to compute the losses caused by friction between tendons and the concrete, the losses which result from the concrete deformation and the losses in the anchorage zone. The computation for post‐tensioned structures is organized in phases: the phase preceding prestressing (Phase I), the prestressing phase (Phase II) and the phase following prestressing (Phase III). The load is applied incrementally until failure. The model is tested on a number of examples.

Details

Engineering Computations, vol. 14 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 January 2022

Gang Liu, Fengshan Ma, Maosheng Zhang, Jie Guo and Jun Jia

Continua and discontinua coexist in natural rock materials. This paper aims to present an improved approach for addressing the mechanical response of rock masses based on the…

Abstract

Purpose

Continua and discontinua coexist in natural rock materials. This paper aims to present an improved approach for addressing the mechanical response of rock masses based on the combined finite-discrete element method (FDEM) proposed by Munjiza.

Design/methodology/approach

Several algorithms have been programmed in the new approach. The algorithms include (1) a simpler and more efficient algorithm to calculate the contact force; (2) An algorithm for tangential contact force closer to the actual physical process; (3) a plastic yielding criterion (e.g. Mohr-Coulomb) to modify the elastic stress for fitting the mechanical behavior of elastoplastic materials; and (4) a complete code for the mechanical calculation to be implemented in Matrix Laboratory (MATLAB).

Findings

Three case studies, including two standard laboratory experiments (uniaxial compression and Brazilian split test) and one engineering-scale anti-dip slop model, are presented to illustrate the feasibility of the Y-Mat code and its ability to deal with multi-scale rock mechanics problems. The results, including the progressive failure process, failure mode and trajectory of each case, are acceptable compared to other corresponding studies. It is shown that, the code is capable of modeling geotechnical and geological engineering problems.

Originality/value

This article gives an improved FDEM-based numerical calculation code. And, feasibility of the code is verified through three cases. It can effectively solve the geotechnical and geological engineering problems.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 5 of 5